ДНК (дезоксирибонуклеїнова кислота) являє собою одну з трьох макромолекул клітини (дві інші – білки і рибонуклеїнова кислота), яка забезпечує збереження і передачу генетичного коду розвитку і діяльності організмів. Простими словами, ДНК – носій генетичної інформації. В її складі міститься генотип індивіда, який має здатність до самовідтворення і передає інформацію у спадок.

Історія дослідження

ДНК була відкрита Іоганном Мішером у 1869 році. Спочатку нова речовина отримала назву «нуклеїн», а пізніше, коли Мішер виявив у неї кислотні властивості, її назвали нуклеїновою кислотою. Біологічна функція нововідкритої речовини була невідома.

Іоганн Мішер

Поступово було доведено, що саме ДНК, а не білки, як вважалося раніше, є носієм генетичної інформації. Одними з перших вирішальних доказів стали експерименти О. Евері, Коліна Мак-Леода і Маклін Мак-Карті (1944 рік) з трансформації бактерій. Експеримент американських учених Алфреда Хершу і Марти Чейз (1952 рік) з міченими радіоактивними ізотопами білками і ДНК бактеріофагів показали, що в заражену клітину передається тільки нуклеїнова кислота фага, а нове покоління фага містить такі ж білки і нуклеїнову кислоту, як і початковий фаг.

До 50-х років 20 століття точна будова ДНК, як і спосіб передачі спадкової інформації, залишалася невідомою. Хоч і було напевно відомо, що ДНК складається з кількох ланцюгів, що у свою чергу складаються з нуклеотидів, ніхто не знав точно, скільки цих ланцюгів і як вони сполучені.

Структура подвійної спіралі ДНК була запропонована Френсісом Кріком і Джеймсом Ватсоном у 1953 році на основі рентгеноструктурних даних, отриманих Морісом Вілкінсом і Розаліндою Франклін, і «правил Чаргаффа», згідно з якими в кожній молекулі ДНК дотримуються строгі співвідношення, що зв’язують між собою кількість азотистих основ різних типів. Пізніше запропонована Ватсоном і Кріком модель будови ДНК була доведена, а їхня робота відмічена Нобелівською премією з фізіології і медицини 1962 року.

Загальний опис

З хімічної точки зору ДНК — це довга полімерна молекула, що складається з послідовності блоків — нуклеотидів. Кожний нуклеотид складається з азотистої основи, цукру (дезоксирибози) і фосфатної групи (або гомологічної арсеноїдної). Зв’язки між нуклеотидами в ланцюгу утворюються за рахунок дезоксирибози і фосфатної групи. У переважній більшості випадків макромолекула ДНК складається з двох ланцюгів, орієнтованих азотистими основами один проти одного. Ця дволанцюгова молекула утворює спіраль. В цілому структура молекули ДНК отримала назву «подвійної спіралі».

У ДНК зустрічається чотири види азотистих основ (аденін, гуанін, тимін і цитозин). Азотисті основи одного з ланцюгів сполучені з азотистими основами іншого ланцюга водневими зв’язками згідно з принципом комплементарності: аденін з’єднується тільки з тиміном, гуанін — тільки з цитозином.

 

Просторова організація ДНК в клітинах

У клітинах еукаріотів (наприклад, тварин, рослин або грибів) ДНК міститься в ядрі клітини в складі хромосом, а також в деяких клітинних органелах (мітохондріях і пластидах). У клітинах прокаріотів (бактерій і архей) кільцева або лінійна молекула ДНК, так званий нуклеоїд, міститься в цитоплазмі і прикріплена зсередини до клітинної мембрани. У них і у нижчих еукаріотів (наприклад дріжджів) зустрічаються також невеликі автономні кільцеві молекули ДНК, так звані плазміди. Крім того, одно- або дволанцюгові молекули ДНК можуть утворювати геном ДНК-вірусів.

Найменша структурна одиниця ДНК в клітині це ДНК, намотана на нуклеосому. Довжина нуклеосомної ділянки ДНК 147 пар нуклеотидів.

Біологічна роль ДНК

ДНК є носієм генетичної інформації, записаної у вигляді нуклеотидної послідовності за допомогою генетичного коду. З молекулами ДНК зв’язані дві основні властивості живих організмів — спадковість і мінливість. У ході процесу, що називається реплікацією ДНК, з початкового, материнського, ланцюга, утворюються дві копії ДНК, які успадковуються дочірніми клітинами при поділі. Клітини, що утворилися таким чином, будуть генетично ідентичними. Потрібна для клітинної життєдіяльності генетична інформація зчитується при експресії генів. У багатьох випадках вона використовується для біосинтезу білків у процесах транскрипції (синтезу молекул РНК на матриці ДНК) і трансляції (синтезу білків на матриці РНК).

Методи роботи з ДНК

спиртова преципітація ДНК

З розвитком молекулярної біології було розроблено багато методів роботи з ДНК. Ці методи перш за все включають виділення ДНК, зазвичай за допомогою руйнування клітин, що містять необхідну ДНК, та спиртової преципітації ДНК з розчину. При необхідності ДНК очищують за допомогою адсорбційної хроматографії. Більші кількості ДНК можна одержати за допомогою полімеразної ланцюгової реакції (ПЛР), що вимагає лише кількох молекул ДНК.

Отримана ДНК може бути проаналізована за допомогою рестрикційного аналізу, тобто розрізання ДНК на певних ділянках за допомогою рестриктаз, та розділення отриманих фрагментів за допомогою гелевого електрофорезу. В деяких випадках можливий одночасний аналіз цілих геномів, для чого використовуються ДНК-мікрочіпи.

Ще одним з поширених методів роботи з ДНК є секвенування, тобто встановлення її нуклеотидної послідовності.

Генна інженерія

Сучасні біологія і біохімія інтенсивно використовують методи, засновані на рекомбінантній ДНК. Рекомбінантна ДНК — штучно створена послідовність ДНК, частини якої можуть бути синтезовані хімічним шляхом, за допомогою ПЛР, або клонувані з ДНК різних організмів.

Судово-медична експертиза

Днк тест на бітьківство, візуалізація

Судмедексперти використовують знайдені на місці злочину ДНК крові, сперми, шкіри, слини або волосся для ідентифікації злочинця. Процес ідентифікації називається генетичним фінґерпринтингом . У фінґерпринтингу порівнюється варіабельні ДНК геному, наприклад, тандемні повтори: мікросателіти й мінісателіти різних людей. Фінґерпринтинг був розроблений в 1984 році британським генетиком Алеком Джеффрейсом і вперше використаний як доказ у суді над Коліном Пітчфорком в справі, де він був звинувачений у вбивстві й зґвалтуванні.

Алек Джеффрейс за роботою

Наразі в багатьох західних країнах, у злочинців, звинувачених у злочинах деяких типів, забирається зразок ДНК для бази даних. Це допомогло визначити винних в раніше нерозкритих злочинах, оскільки ДНК зберігається на речових доказах. Ще цей метод використовується для визначення особи у разі масової загибелі людей та багатьох інших тестах.

Також метод генетичного фінґерпринтингу використовується для проведення тесту на батьківство, встановлення відповідності донорських органів, діагностики генетичних хвороб та дослідження популяцій тварин.

Біоінформатика

Біоінформатика включає обробку даних, що міститься в послідовності ДНК. Розвиток комп’ютерних методів зберігання і пошуку такої інформації привів до розвитку таких напрямів інформатики, що знайшли й інше застосування, як SSA (string searching algorithm), машинне навчання і організація баз даних.

ДНК і комп’ютери 

ДНК-комп’ютер має переваги над електронними комп’ютерами, оскільки теоретично вимагає менше енергії, займає менше місця і ефективніший завдяки можливості одночасних підрахунків. Завдяки компактності ДНК вона теоретично може знайти застосування в криптографії, де може використовуватися для конструювання одноразових шифроблокнотів.

Історія і антропологія

Оскільки з часом в ДНК накопичуються мутації, які потім передаються у спадок, вона містить історичну інформацію, тож генетики можуть досліджувати еволюційну історію організмів (філогенетику).

Філогенетичне дерево. схема

Філогенетика — метод еволюційної біології. Якщо порівнюються послідовності ДНК усередині виду, еволюційні генетики можуть довідатися історію окремих популяцій. Ця інформація може бути корисною в різних областях науки, починаючи з екологічної генетики й закінчуючи антропологією. Наприклад, при дослідженні як мітохондріальної так і ядерної ДНК твердих тканин (зубів та кісток) мумій було встановлено, що стародавні єгиптяни більш споріднені до стародавніх європейців ніж до сучасних Єгиптян. Їхні найближчі родичі проживали в місцевості Левант під час неоліту та бронзової доби.

Іншим прикладом використання послідовності ДНК для встановлення еволюції людини може бути аналіз неандертальского геному і встановлення, що впродовж історії неандертальці парувалися з Homo sapiens

Робота з рештками Homo Sapiens

 

Якщо ви знайшли помилку, будь ласка, виділіть фрагмент тексту та натисніть Ctrl+Enter.

Підписуйтесь на наш канал у Telegram

1 КОМЕНТАР

Додайте відповідь

Please enter your comment!
Please enter your name here